Design of Chern and Mott insulators in buckled 3d-oxide honeycomb bilayers
نویسندگان
چکیده
David Doennig, Santu Baidya, Warren E. Pickett, and Rossitza Pentcheva 1, ∗ Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany Department of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany Department of Physics, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A. (Dated: April 2, 2016)
منابع مشابه
Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi.
We use first-principles electronic structure calculations to predict a new class of two-dimensional (2D) topological insulators (TIs) in binary compositions of group III elements (B, Al, Ga, In, and Tl) and bismuth (Bi) in a buckled honeycomb structure. We identify band inversions in pristine GaBi, InBi, and TlBi bilayers, with gaps as large as 560 meV, making these materials suitable for room-...
متن کاملHigh Spin-Chern Insulators with Magnetic Order
As a topological insulator, the quantum Hall (QH) effect is indexed by the Chern and spin-Chern numbers C and Cspin. We have only Cspin = 0 or ± 1/2 in conventional QH systems. We investigate QH effects in generic monolayer honeycomb systems. We search for spin-resolved characteristic patterns by exploring Hofstadter's butterfly diagrams in the lattice theory and fan diagrams in the low-energy ...
متن کاملRealising Haldane's vision for a Chern insulator in buckled lattices
The Chern insulator displays a quantum Hall effect with no net magnetic field. Proposed by Haldane over 20 years ago, it laid the foundation for the fields of topological order, unconventional quantum Hall effects, and topological insulators. Despite enormous impact over two decades, Haldane's original vision of a staggered magnetic field within a crystal lattice has been prohibitively difficul...
متن کاملPrediction of Quantum Anomalous Hall Effect in MBi and MSb (M:Ti, Zr, and Hf) Honeycombs
The abounding possibilities of discovering novel materials has driven enhanced research effort in the field of materials physics. Only recently, the quantum anomalous hall effect (QAHE) was realized in magnetic topological insulators (TIs) albeit existing at extremely low temperatures. Here, we predict that MPn (M =Ti, Zr, and Hf; Pn =Sb and Bi) honeycombs are capable of possessing QAH insulati...
متن کاملTopological Bose-Mott insulators in a one-dimensional optical superlattice.
We study topological properties of the Bose-Hubbard model with repulsive interactions in a one-dimensional optical superlattice. We find that the Mott insulator states of the single-component (two-component) Bose-Hubbard model under fractional fillings are topological insulators characterized by a nonzero charge (or spin) Chern number with nontrivial edge states. For ultracold atomic experiment...
متن کامل